Prion propagation can occur in a prokaryote and requires the ClpB chaperone

نویسندگان

  • Andy H Yuan
  • Sean J Garrity
  • Entela Nako
  • Ann Hochschild
چکیده

Prions are self-propagating protein aggregates that are characteristically transmissible. In mammals, the PrP protein can form a prion that causes the fatal transmissible spongiform encephalopathies. Prions have also been uncovered in fungi, where they act as heritable, protein-based genetic elements. We previously showed that the yeast prion protein Sup35 can access the prion conformation in Escherichia coli. Here, we demonstrate that E. coli can propagate the Sup35 prion under conditions that do not permit its de novo formation. Furthermore, we show that propagation requires the disaggregase activity of the ClpB chaperone. Prion propagation in yeast requires Hsp104 (a ClpB ortholog), and prior studies have come to conflicting conclusions about ClpB's ability to participate in this process. Our demonstration of ClpB-dependent prion propagation in E. coli suggests that the cytoplasmic milieu in general and a molecular machine in particular are poised to support protein-based heredity in the bacterial domain of life.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bacterial and Yeast AAA+ Disaggregases ClpB and Hsp104 Operate through Conserved Mechanism Involving Cooperation with Hsp70.

Escherichia coli ClpB and Saccharomyces cerevisiae Hsp104 are members of the Hsp100 family of ring-forming hexameric AAA+ chaperones that promote the solubilization of aggregated proteins and the propagation of prions. ClpB and Hsp104 cooperate with cognate Hsp70 chaperones for substrate targeting and activation of ATPase and substrate threading, achieved by transient Hsp70 binding to the repre...

متن کامل

Regulation of the Hsp104 Middle Domain Activity Is Critical for Yeast Prion Propagation

Molecular chaperones play a significant role in preventing protein misfolding and aggregation. Indeed, some protein conformational disorders have been linked to changes in the chaperone network. Curiously, in yeast, chaperones also play a role in promoting prion maintenance and propagation. While many amyloidogenic proteins are associated with disease in mammals, yeast prion proteins, and their...

متن کامل

Schizosaccharomyces pombe disaggregation machinery chaperones support Saccharomyces cerevisiae growth and prion propagation.

Hsp100 chaperones protect microorganisms and plants from environmental stress by cooperating with Hsp70 and its nucleotide exchange factor (NEF) and Hsp40 cochaperones to resolubilize proteins from aggregates. The Saccharomyces cerevisiae Hsp104 (Sc-Hsp104)-based disaggregation machinery also is essential for replication of amyloid-based prions. Escherichia coli ClpB can substitute for Hsp104 t...

متن کامل

Hsp104 and ClpB: protein disaggregating machines.

Heat-shock protein 104 (Hsp104) and caseinolytic peptidase B (ClpB), members of the AAA+ superfamily, are molecular machines involved in disaggregating insoluble protein aggregates, a process not long ago thought to be impossible. During extreme stress they are essential for cell survival. In addition, Hsp104 regulates prion assembly and disassembly. For most of their protein remodeling activit...

متن کامل

Prokaryotic chaperones support yeast prions and thermotolerance and define disaggregation machinery interactions.

Saccharomyces cerevisiae Hsp104 and Escherichia coli ClpB are Hsp100 family AAA+ chaperones that provide stress tolerance by cooperating with Hsp70 and Hsp40 to solubilize aggregated protein. Hsp104 also remodels amyloid in vitro and promotes propagation of amyloid prions in yeast, but ClpB does neither, leading to a view that Hsp104 evolved these activities. Although biochemical analyses ident...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014